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ABSTRACT 
 

Evolution Strategies (ES) are a class of Evolutionary Algorithms based on Gaussian mutation 
and deterministic selection. Gaussian mutation captures pair-wise dependencies between the 
variables through a covariance matrix. Covariance Matrix Adaptation (CMA) is a method to 
update this covariance matrix. In this paper, the CMA-ES, which has found many applications 
in solving continuous optimization problems, is employed for size optimization of steel space 
trusses. Design examples reveal competitive performance of the algorithm compared to the 
other advanced metaheuristics. 
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1. INTRODUCTION 
 

In the modern era, where resources are often severely limited, there is no company not 
involved in solving cost optimization problems. This optimization involves designing a project 
doing the most with consuming the least materials, energy and time. Since real-life 
optimization problems are often complex and difficult to solve, developing new solution 
strategies is always a challenging topic in engineering. 

As the material cost is one of the major factors in final construction cost of a building, 
engineers are often asked to seek for a design that efficiently fulfills the requirements of the 
building codes with utilizing the least volume of materials. In other words, owners and 
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designers always prefer to have optimal structures. Over the last two decades, various 
metaheuristics have been developed for structural optimization including Evolutionary 
Algorithms [1-14], Ant Colony Optimization [15-22], Particle Swarm Optimizer [23-25], 
Harmony Search [26-28], Big Bang-Big Crunch Optimization [29] and Charged System 
Search algorithm [30]. 

Truss optimization is one of the most active fields in structural mechanics. Size 
optimization of truss structures looks for optimum values of member cross-sectional areas that 
minimize the structural weight. This optimal solution should also satisfy the inequality 
constraints that limit design variable sizes (member cross-sectional areas) and structural 
responses (member stresses and nodal displacements).  

The metaheuristic developed in this paper, belongs to a class of Evolution Strategies. In the 
nineteenth century, Mendel was the first to state the preliminary concepts of heredity from 
parents to offsprings [31]. Then in 1859, Darwin presented the theory of evolution in his 
famous book On the Origin of Species [32]. In the 1980s, these theories of creation of new 
species and their evolution have inspired computer scientists in designing Evolutionary 
Algorithms (EA). Different types of EAs have evolved independently during the past 40 years: 
Genetic Algorithms [33], Evolution Strategies [34], Evolutionary Programming [35], and 
Genetic Programming [36]. Each of these constitutes a different approach; however, they are 
inspired by the same principles of natural evolution. EAs are the most studied population-
based metaheuristics and this has promoted the field known as Evolutionary Computation 
[31]. 

The CMA-ES is a stochastic method for continuous optimization of non-linear, non-convex 
problems, which was first introduced by Hansen et al. in 1995 [37]. In an ES, new candidate 
solutions are sampled according to a multivariate normal distribution. Pair-wise dependencies 
between the variables in this distribution are described by a covariance matrix. The CMA is a 
method to update the covariance matrix of this distribution. The CMA-ES is a second-order 
optimization approach, where only the ranking between candidate solutions is exploited for 
learning the sample distribution, and neither derivatives nor even the objective function values 
are required by the method. This makes the method feasible on ill-conditioned and non-
continuous problems, as well as on multimodal or noisy problems [31]. 

After this section, the paper is organized as follows. Section 2 introduces the CMA-ES. In 
section 3, objective function and constraints of the problem are formulated. Section 4 studies 
various design examples to verify the efficiency of the algorithm. A discussion is provided in 
section 5 and finally the paper is concluded with section 6. 
 
 

2. THE CMA-ES  
 

In what follows, a brief description of the CMA-ES is presented. For more information about 
terminology and details, interested readers may refer to [38]. A summary of the algorithm 
together with a table of the default strategy parameters and their values are provided in 
Appendix A. First, a few required fundamentals are explained. 
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2.1. Preliminaries 

2.1.1. Eigendecomposition of a positive definite matrix 

A symmetric positive definite matrix, C ∈ nnR × , is characterized by; for each x ∈ nR \{0} 
holds xT C x > 0. The matrix C has an orthonormal basis of eigenvectors, B = [b1,…,bn], with 
corresponding eigenvalues, 2

1d ,…, 2
nd  > 0. The eigendecomposition of C is defined as 

 
 C = B D2 BT  (1) 
where  

B is the eigenvector matrix of C; 
D =  diag (d1 ,…, dn), a diagonal matrix with square roots of eigenvalues of C as diagonal 

entries. 
The matrix decomposition (1) is unique, apart from signs of columns of B and 

permutations of columns in B and D2, provided all the eigenvalues are distinct. 
 

2.1.2. Multivariate Normal Distribution 

A multivariate normal distribution, (m, C), has a unimodal bell-shaped density, where the 
top of the bell (the modal value) corresponds to the distribution mean, m. The distribution  
(m, C) is uniquely determined by its mean m ∈ nR  and its symmetric and positive definite 
covariance matrix C ∈ nnR × Covariance matrices have an appealing geometrical interpretation; 
they can be uniquely identified with an (hyper-) ellipsoid { x ∈ nR  |  xT C -1 x = 1}, as shown 
in Figure 1. 
 

 
Figure 1. Ellipsoids depicting one–σ lines of equal density of six different normal distributions, 

where  σ ∈ +R , D is a diagonal matrix, and C is a positive definite covariance matrix. Gray lines 
depict possible objective function contour lines 

 
The ellipsoid is a surface of equal density of the distribution. The principal axes of the 

ellipsoid correspond to the eigenvectors of C, the squared axes lengths correspond to the 
eigenvalues. As mentioned, the eigendecomposition is denoted by C = B D2 BT. If D = σ I, 
where σ ∈ +R  and I denotes the identity matrix, C = σ 2 I and the ellipsoid is isotropic (Figure 



A. KAVEH, M. KALATEH-AHANI and M.S. MASOUDI 

 

236 

1, left). If B = I, then C = D2 is a diagonal matrix and the ellipsoid is axis parallel oriented as 
is shown in Figure 1, middle. In the coordinate system given by the columns of B, the 
distribution  (0, C) is always uncorrelated (Figure 1, right). 

The normal distribution  (m , C) can be written in different ways:  

 (m, C)  ~  m +  (0, C)                                          (2) 

                 ~  m + C ½   (0, I) 

                       ~  m + B D BT  (0, I) 

                  ~  m + B D  (0, I)  

where “~” denotes equality in distribution. The last row can be well interpreted, from right to left  
 (0, I) produces an spherical (isotropic) distribution as in Figure 1, left. 

D scales the spherical distribution within the coordinate axes as in Figure 1, middle.  
B defines a new orientation for the ellipsoid, where the new principal axes of the ellipsoid 

correspond to the columns of B (Figure 1, right).  
Equation (2) is useful to compute  (m, C) distributed vectors, because  (0, I) is a 

vector of independent (0, 1)-normally distributed numbers that can easily be realized on a 
computer. 

 
2.2. Basic equation: sampling 

In the CMA-ES, a population of new search points (individuals, offspring) is generated by 
sampling a multivariate normal distribution. At each generation, the basic equation for 
sampling is 
 

)1( +g
kx   ~  )( gm  + )( gσ   (0, )( gC )        for k = 1 , … , λ                (3) 

 
where  (0, )( gC ) is a multivariate normal distribution with zero mean and covariance matrix 

)( gC . 
)1( +g

kx  ∈ nR , k-th offspring from generation g + 1. 

m(g) ∈ nR , mean value of the search distribution at generation g. 
)( gσ  ∈ +R , overall standard deviation, step-size, at generation g. 
)( gC  ∈ nnR × , covariance matrix at generation g. 

λ ≥ 2 , population size, number of offspring. 
To define the complete iteration step, the remaining question is, how to calculate )1( +gm , 

)1( +gC and )1( +gσ  for the next generation g + 1. The next three sections will answer these 
questions, respectively. 

 
2.3. Selection and recombination 

The new mean )1( +gm  of the search distribution is a weighted average of μ selected points 
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from the sample: 

 ∑
=

++ =
µ

λω
1

1)(
:

)1(

i

g
ii

g
  xm

 (4) 
where 

μ ≤ λ is the parent population size, i.e. the number of selected points. 

iω  ∈ +R , positive weight coefficients for recombination. ∑
=

=
µ

ω
1

1
i

i  and 1 ω  ≥ 2 ω ≥… 

≥ µω  ≥ 0. 
1)(

:
+g

i λ  x  , i-th best individual out of 1)(
1

+gx , … , 1)( +g
λ x  from (3). The index i : λ denotes 

the index of the i-th ranked individual and )( 1)(
:1

+gf λ  x ≤ )( 1)(
:2

+gf λ  x ≤ … ≤ )( 1)(
:
+gf λλ   x , where  

f  is the objective function to be minimized. 

The measure μeff = (∑
=

µ

ω
1i

i )-1 will be used in the following and can be paraphrased as 

variance effective selection mass. From the definition of iω  in (4), 1 ≤ μeff ≤ μ is derived. 
 
2.4. Adapting the covariance matrix 

The CMA-ES is based on two adaptation principles, which make it an efficient procedure for 
multimodal continuous problems. First, a maximum-likelihood principle, based on the idea to 
increase the probability of successful candidate solutions and search steps. For this purpose, 
the algorithm updates the covariance matrix of the distribution such that the likelihood of 
already applied successful steps is increased. Rank-μ-update performs this principle [31]. 

Second, an evolution path principle, based on memorizing the time evolution path of the 
distribution mean. These paths contain significant information about the correlation between 
consecutive steps. The evolution paths are exploited in two ways. One path is used for the 
covariance matrix adaptation procedure and facilitates a possibly much faster variance 
increase of favorable directions. Rank-one-update performs it. The other path is used to 
conduct an additional step-size control that effectively prevents premature convergence yet 
allowing faster convergence (see section 2.5) [31].  
 
2.4.1. Rank-μ-update 

Choosing )0(C  to be the unity matrix, then the new covariance matrix C (g+1) is given by  
 

 
1)(

)(
)(1)(

2

1 )(1 ++ +−= g
g

gg cc µµµ
σ

CC    C  (5) 

                      
∑

=

+++−=
µ

λλµµ ω
1

T1)(
:

1)(
:

)(  )(1
i

g
i

g
ii

g cc     yy C    

where 
0 ≤ µc  ≤ 1 is learning rate for updating the covariance matrix. For µc  = 1, no prior 
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information is retained and For µc  = 1, no learning takes place. 
)()(1)(

:
1)(

: /)( ggg
i

g
i σλλ mx  y     −= ++ , the selected steps. 

This covariance matrix update is called rank-μ-update, because the sum of outer products 
in (5) is of rank μ. The number 1/ µc  is the backward time horizon, which says approximately 
37% of the information in C (g+1) is older than the last 1/ µc  generations. 

 
2.4.2. Rank-one-update 

A sequence of successive steps, the strategy takes over a number of generations, is called an 
evolution path. An evolution path can be expressed by a sum of consecutive steps. This 
summation is referred to as cumulation. The evolution path of the distribution mean is 
expressed by1 

 
)(

)()1(
)(1)( )2()1( g

gg

effc
g

cc
g

c cc
σ

µ mmc  p    p c
−−+−=

+
+

 
(6) 

where 
)(g

cp  ∈ nR  is the evolution path at generation g and )0(
cp  = 0. 

cc , learning rate for updating the evolution path. 
The rank-one-update of the covariance matrix )( gC  via the evolution path 1)( +g

cp  is defined 
as  
 T1)(1)(

1
)(

1
1)(  )(1 +++ +−= g

c
g

c
gg cc ppC    C  (7) 

where 
1c  is the learning rate for the rank one update. 

 
2.4.3. Combining Rank-μ-update and cumulation 

The final CMA update of the covariance matrix combines (5) and (7): 
 

 ∑
=

+++++ ++−−=
µ

λλµµ ω
1

T1)(
:

1)(
:

T1)(1)(
1

)(
1

1)(  )(1
i

g
i

g
ii

g
c

g
c

gg cccc     yy ppC    C  (8) 
 
Equation (8) combines the advantages of (5) and (7). On the one hand, the information 

within the population of one generation is used efficiently by the Rank-μ-update. On the other 
hand, information of correlations between generations is exploited by using the evolution path 
for the rank-one update. The former is important in large populations, the latter is in particular 
important in small populations. 

Figure 2 demonstrates the concept behind the covariance matrix adaptation in the CMA-ES 
algorithm. As the generations progress, the algorithm approaches the global optimum while 
simultaneously the distribution shape adapts to an ellipsoidal landscape and the search is 
directed along an evolution path. 

                                                   
1 In the final algorithm (6) is slightly modified, see Appendix A. 
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Figure 2. Estimation of the search distribution for the second generation. Left: producing the first 

population by sampling of  ( 0 , I ). Middle: selection of the new parents and updating the 
covariance matrix; solid lines determines the selected steps. Right: search distribution of the next 

generation (dashed ellipsoid). Contour lines (grayed) indicate that the strategy should move 
toward the upper right corner 

 
2.5. Step-size control 

The covariance matrix adaptation, introduced in the last section, does not explicitly control the 
“overall scale” of the distribution. Step-size control defines how much the distribution 
ellipsoid should be elongated or shortened, to achieve an optimal scale. The evolution path is 
utilized to control the step-size. 

 

 
Figure 3. Two evolution paths of respectively six steps from various situations. The length of the 

evolution paths is remarkably different and is exploited for step-size control 
 
The length of an evolution path is exploited, based on the following reasoning. Whenever 

the evolution path is short, single steps cancel each other out as is shown in Figure 3, left. 
Hence, they are called anti-correlated. If steps annihilate each other, the step-size should be 
decreased. Whenever the evolution path is long, the single steps are pointing to similar 
directions and they are called correlated (Figure 3, right). Because the steps are similar, the 
same distance can be covered by fewer but longer steps into the same directions. 
Consequently, the step-size should be increased. 
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To decide whether the evolution path is long or short, the length of the path is compared 
with its expected length under random selection, which is equal to the expectation of the 
Euclidean norm of a  (0, I) distributed random vector. If selection biases the evolution path 
to be longer than expected, σ is increased, and vice versa.  

To calculate the step-size, a conjugate evolution path is constructed, because the expected 
length of the evolution path pc from (6) depends on its direction. Initialized with )0(

σp  = 0, the 
conjugate evolution path is given by  

 

 )(

)()1(
2
1

(g))(1)( )2()1( g

gg

eff
gg cc

σ
µσσσσσ

mmC c  p    p −−+−=
+

−+
 (9) 

where 
)( g

σp  ∈ nR  is the conjugate evolution path at generation g.  
cσ, the learning rate. 

T)(1)()(2
1

(g) ggg BDBC −−
= , this transformation makes the expected length of 1)( +g

σp  
independent of its direction. 

The step-size update is formulated as   
 

 

 

1))
||)(0,||E

||||((
)1(

)(1)( −=
+

+

I      
  

g
σ

σ

σgg p
d
cexpσσ  (10) 

where 
σd  is damping parameter that scales the change magnitude of )( gσ . 

E ||  (0, I) || = )
21

1
4
11( 2nn

n +− , expected length under random selection where n is 

the search space dimension. 
 
 

3. OPTIMIZATION PROBLEM 
 

For optimal design of truss structures, the objective function can be expressed as 
 

Minimize i

m

i
i lx∑

=

=
1

i)W(
 

  x γ
 

(11) 

where 
W(x) is the weight of the structure. 
m , number of members making up the structure.  

iγ , material density of member i. 
li, length of member i. 

ix , cross-sectional area of member i chosen between xmin and xmax. 
The constraints are as follows 
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where m and n are number of members and nodes, respectively. σ, δ and allowable represent 
member stress, nodal displacement and their upper bound, correspondingly.  

According to AISC-ASD code [39], the stress limitation for tension members is 
yallowalbe Fσ 6.0= , in which yF  is the yield stress of steel. For compression members this 

limitation is given by 
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where 
E is the modules of elasticity.  

i

i
i r

lk 
 =λ , the slenderness ratio of member i where k and ir  are the effective length factor 

and the radius of gyration, respectively.  

yC FEπC /2 2  = , the slenderness ratio dividing the elastic and inelastic buckling regions. 
 
 

4. DESIGN EXAMPLES 
 

In this section, the proposed algorithm is implemented in MATLAB® and some test problems 
are optimized. All runs are performed with the default strategy parameter setting given in 
Appendix A. The structures are analyzed using the standard matrix stiffness method. The 
results are compared to those of the other advanced metaheuristics to demonstrate their 
comparative performance. The CPU-time consumption of the program is calculated for each 
case. All recorded times are obtained using an Intel® Core ™ 2 Duo T9300 @ 2.50 GHz 
processor equipped with 4 GBs of RAM. 

 
4.1. A twenty five-bar space truss 

The topology and nodal numbering of a 25-bar space truss structure are shown in Figure 4, 
known as a benchmark in the field of structural optimization. The material density is 
considered as 0.1 lb/in3 (2768 kg/m3) and the modulus of elasticity is taken as 10000 ksi 
(68950 MPa). Twenty-five members are categorized in eight groups as follows: (1) A1, (2) 
A2 –A5, (3) A6–A9, (4) A10–A11, (5) A12–A13, (6) A14–A17, (7) A18–A21, and (8) A22–
A25. 
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Figure 1. A 25-bar space truss 

 
This truss is assumed to be subjected to two loading conditions, shown in Table 1. 

Maximum displacement limitations of ±0.35 in (±8.89 mm) are imposed on every node in 
every direction and the axial stress constraints are different for each group as shown in Table 
2. Minimum cross-sectional area of all members is 0.01 in2 (0.645 cm2) and the maximum is 
taken as 3.4 in2 (21.935 cm2). 

 
Table 1. Loading conditions for the 25-bar space truss 

 Case 1      Case 2     
Node 

 Px kips 
(kN) 

 Py kips 
(kN) 

 Pz kips 
(kN) 

 Px kips 
(kN) 

 Py kips 
(kN) 

 Pz kips 
(kN) 

1  0.0  20.0 (89)  -5.0 (22.5)  1.0 (4.45)  10.0 (44.5)  -5.0 (22.25) 
2  0.0  20.0 (89)  -5.0 (22.5)  0.0  10.0 (44.5)  -5.0 (22.25) 
3  0.0  0.0  0.0  0.5 (2.22)  0.0  0.0 
6  0.0  0.0  0.0  0.5 (2.22)  0.0  0.0 
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Table 2. Member stress limitation for the 25-bar spatial truss 

Element group Compressive stress limitations 
ksi (MPa) 

Tensile stress limitations 
ksi (MPa) 

1 A1 35.092 (241.96) 40.0 (275.80) 

2 A2 ~ A5 11.590 (79.913) 40.0 (275.80) 

3 A6 ~ A9 17.305 (119.31)) 40.0 (275.80) 

4 A10 ~ A11 35.092 (241.96) 40.0 (275.80) 

5 A12 ~ A13 35.092 (241.96) 40.0 (275.80) 

6 A14 ~ A17 6.759 (46.603) 40.0 (275.80) 

7 A18 ~ A21 6.959 (47.982) 40.0 (275.80) 

8 A22 ~ A25 11.082 (76.410) 40.0 (275.80) 

 
The best solution achived by the algorithm after fifty runs, as well as the results of some 

other methods are provided in Table 3. The CPU-time consumption was 35.7 seconds. 
 

Table 3. Optimal design comparison for the 25-bar spatial truss 

Optimal cross sectional areas (in2) 

Rajeev 
et al. 
[1] 

Schutte 
et al. 
[23] 

Lee et 
al.[26] Kaveh et al.[21, 40, 29, 30] Present work Element 

group 

GA PSO HS IACS HPSAC
O HBB-BC CSS In2 cm2 

1 A1 0.100 0.010 0.047 0.010 0.010 0.010 0.010 0.010 0.0645 

2 A2 ~A5 1.800 0.010 2.022 2.042 2.054 1.993 2.003 1.981 12.7820 

3 A6 ~A9 2.300 2.893 2.950 3.001 3.008 3.056 3.007 3.002 19.3694 

4 A10 ~A11 0.200 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.0645 

5 A12 ~A13 0.100 0.010 0.014 0.010 0.010 0.010 0.010 0.010 0.0645 

6 A14 ~A17 0.800 0.671 0.688 0.684 0.679 0.665 0.687 0.684 4.4140 

7 A18 ~A21 1.800 1.611 1.657 1.625 1.611 1.642 1.655 1.678 10.8244 

8 A22 ~A25 3.000 2.717 2.663 2.672 2.678 2.679 2.660 2.659 17.1569 

Best 
weight (lb) 

546.00
0 545.210 544.380 545.030 544.990 545.160 545.100 545.163 2424.848 

N 
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Figure 5. A dome truss 

 
4.2. A dome truss 

Figure 5 demonstrates the geometry and group numbers of a 120-bar dome truss. The 
modulus of elasticity is 30450 ksi (210000 MPa) and the material density is 0.288 lb/in3 
(7971.813 kg/m3). The yield stress of steel is taken as 58.0 ksi (400 MPa). The dome is 
considered to be subjected to vertical loading at all the unsupported joints. These loads are 
taken as − 13.49 kips (60 kN) at node 1, − 6.744 kips (30 kN) at nodes 2 through 14, and 
− 2.248 kips (10 kN) at the rest of the nodes.  
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The radius of gyration of each member ( ir ) can be expressed in terms of its cross-sectional 
area, i.e., b

ii aAr = , which a and b are the constants depending on the types of sections adopted 
for the members. In this example, pipe sections (a = 0.4993 and b= 0.6777) are adopted for 
bars. The range of cross-sectional areas varies from 0.775 to 20.0 in2 (5 to 129.032 cm2). 
Displacement limitations of ±0.1969 in (±5 mm) are imposed on all nodes in x, y and z 
directions and stress constraints are assumed according to AISC-ASD code (13). 

In Table 4, the best-found design over fifty runs, together with the results of six other 
heuristic algorithms are presented. The convergence history of the CMA-ES is illustrated in 
Figure 6. The CPU-time consumption was 198.5 seconds. 

 
Table 4. Optimal design comparison for the dome truss 

Optimal cross sectional areas (in2) 

Kaveh et al. [21,41,41,40 ,29,30] Present work 
Element 

group 
IACS PSOPC PSACO HPSACO HBB-BC CSS in2 cm2 

1  A1 3.026 3.040 3.026 3.095 3.037 3.027 3.025 19.516 
2  A2  15.06 13.149 15.222 14.405 14.431 14.606 14.730 95.03 
3  A3  4.707 5.646 4.904 5.020 5.130 5.044 5.153 33.248 
4  A4  3.100 3.143 3.123 3.352 3.134 3.139 3.136 20.237 
5  A5  8.513 8.759 8.341 8.631 8.591 8.543 8.437 54.434 
6  A6  3.694 3.758 3.418 3.432 3.377 3.367 3.306 21.326 
7  A7  2.503 2.502 2.498 2.499 2.500 2.497 2.495 16.098 
Best 

weight 
(lb) 

33320.52 33481.2 33263.9 33248.9 33287.9 33251.9 33256.2 15084.7 N 

 

  
Figure 6. Convergence history of the CMA-ES for the dome truss 
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Figure 7. A 26-story-tower space truss 

 

4.3. A 26-story-tower space truss 

A 26-story-tower space truss containing 942 members and 244 nodes is examined as shown 
in Figure 7. Fifty-nine design variables are used to represent the cross-sectional areas of 59 
member groups in this structure, employing the symmetry of the structure. The material 
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density is 0.1 lb/in3 (2767.990 kg/m3) and the modulus of elasticity is taken as 10000 ksi 
(68950 MPa). The members are subjected to the stress limits of ±25 ksi (172.375 MPa) and 
the four nodes of the top level in every directions are subjected to the displacement limits of 
±15.0 in (38.10 cm). The allowable cross-sectional areas in this example are selected from 0.1 
to 20.0 in2 (from 0.6452 to 129.032 cm2). The loading on the structure consists of: 

1. The vertical load at each node in the first section is equal to − 3 kips (13.344 kN). 
2. The vertical load at each node in the second section is equal to − 6 kips (26.688 kN). 
3. The vertical load at each node in the third section is equal to − 9 kips (40.032 kN). 
4. The horizontal load at each node on the right side in the x direction is equal to − 1 kips 

(4.448 kN). 
5. The horizontal load at each node on the left side in the x direction is equal to 1.5 kips 

(6.672 kN). 
6. The horizontal load at each node on the front side in the y direction is equal to− 1 kips 

(4.448 kN). 
7. The horizontal load at each node on the back side in the y direction is equal to 1 kips 

(4.448 kN). 
 

Table 5. The optimal design achieved by the CMA-ES for the 26-story tower space truss 

Optimal cross-sectional areas (in2)  

Group 
No. Area Group 

No. Area Group 
No. Area Group 

No. Area Group 
No. Area Group 

No. Area 

1 13.596 11 0.107 21 3.851 31 13.374 41 0.107 51 4.536 
2 8.200 12 0.713 22 0.703 32 0.916 42 2.408 52 0.529 
3 5.654 13 2.576 23 5.759 33 2.602 43 11.840 53 11.132 
4 0.413 14 0.504 24 8.770 34 0.622 44 0.723 54 14.911 
5 0.128 15 7.752 25 8.490 35 0.100 45 4.482 55 16.117 
6 4.157 16 0.225 26 4.001 36 1.191 46 0.572 56 2.700 
7 0.547 17 7.770 27 2.452 37 7.519 47 0.250 57 2.188 
8 12.506 18 0.566 28 3.725 38 0.625 48 0.952 58 3.824 
9 8.950 19 6.007 29 5.435 39 4.293 49 15.948 59 1.706 

10 6.207 20 0.250 30 9.336 40 0.612 50 1.402   

 
After 250 runs, the CMA-ES found an optimal design of weight 43055 lb (191505 N) as 

given in Table 5. The result comparison of different heuristic methods is provided in Table 6. 
Figure 8 shows the stress ratios, calculated by dividing the existing member stress by the 
allowable stress. In this figure, positive values belong to the compression members and 
negatives to the tension members. The maximum stress ratio is 99.99% and the maximum 
value of the displacement is equal to 15 in (38.10 cm). The convergence history is illustrated 
in Figure 9. The CPU-time consumption was 3557 seconds.  
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Table 6. Result comparison for the 26-story-tower space truss 

Kaveh et al. [29, 29, 29, 30]  
 

GA PSO HBB-BC CSS 
Present work 

Best weight (lb) 56343 60385 52401 47371 43055 (191505 N)  

 

 
Figure 8. Stress ratios of the 26-story-tower space truss 

 

 
Figure 9. Convergence history of the CMA-ES for the 26-story-tower space truss 

 

4.4. A cooling tower 

A 17-story cooling tower structure containing 1700 members and 377 nodes is illustrated in 
Figure 10. In this example, the objective is to find an optimal design for the lateral load 
bearing system that consists of vertical and diagonal members. As shown in Figure 11, at each 
story, six member groups are considered for the member cross sectional areas, resulting in 
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102 member groups for the entire structure. In this figure, the members having a same 
number belong to a same group. All floors have identical plans as shown in Figure 10. In 
order to have rigid diaphragms, the modulus of elasticity for all horizontal members is taken 
105 times larger than other members in the structure. The lateral loads are applied at the 
central node of each floor. The material density is taken as 0.2836 lb/in3 (7850 kg/m3) and the 
modulus of elasticity is 29869 ksi (205939 MPa). The loading includes: 

1. The vertical load at each exterior node is equal to -11.023 kips (49.033 kN); 
2. The horizontal load at each central node in both x and y directions is equal to 

66.139i kips (294.200 kN), which i is the story number. 
 

 
Figure 10. A cooling tower 

 

 
Figure 11. Member groups of the cooling tower at each story 

 
Stress constraints are considered according to AISC-ASD code (13) and story drift 

limitations of 0.00143 is imposed. Story drift is the difference in horizontal deflection at the 
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top and bottom of a story divided by the story height. The cross-section of the members are 
square pipe sections of thickness 1.969 in (5 cm). Minimum width of the sections is 3.937 in 
(10 cm) and the maximum is taken as 59.055 (150 cm). Cross-sectional areas of all horizontal 
members are assumed to be equal to the maximum allowable area.  

The weight of the best solution obtained over 300 runs is 4220836 lb (18774 kN), provided 
in Table 7. The stress ratio of the members and the drift ratio of the stories, computed by 
dividing the existing story drift by the allowable value, are demonstrated in Figure 12 and 
Figure13, respectively. As is indicated in these figures, the drift constraints are dominant in 
this example. The maximum stress ratio and drift ratio are 98.88% and 100%, respectively. 
The convergence history is shown in Figure 14. The CPU-time consumption was 8938 
seconds.  
 

Table 7. Optimal design achieved by the CMA-ES for the cooling tower 

Optimal width of the square pipe sections (in) 

Group 
No. Width Group 

No. Width Group 
No. Width Group 

No. Width Group 
No. Width Group 

No. Width 

1 51.082 18 24.272 35 37.357 52 7.016 69 10.450 86 8.524 
2 46.122 19 11.637 36 25.424 53 6.922 70 10.843 87 8.990 
3 44.305 20 18.837 37 30.913 54 8.393 71 8.747 88 9.717 
4 36.793 21 18.374 38 24.413 55 7.873 72 10.074 89 9.526 
5 31.728 22 11.116 39 25.728 56 11.243 73 8.273 90 6.706 
6 49.851 23 15.226 40 18.611 57 7.782 74 9.117 91 8.100 
7 25.996 24 17.453 41 16.856 58 7.828 75 9.108 92 8.319 
8 33.565 25 11.586 42 34.738 59 9.278 76 9.574 93 5.559 
9 18.702 26 10.906 43 24.776 60 7.396 77 7.042 94 12.788 
10 22.941 27 38.530 44 14.366 61 6.960 78 9.730 95 8.071 
11 23.990 28 38.772 45 6.285 62 9.507 79 6.614 96 10.431 
12 25.824 29 8.069 46 21.233 63 8.085 80 8.083 97 8.044 
13 34.899 30 41.672 47 4.937 64 6.985 81 9.743 98 4.155 
14 31.597 31 18.444 48 21.646 65 6.801 82 6.289 99 7.179 
15 7.466 32 12.751 49 10.641 66 4.553 83 4.847 100 10.129 
16 14.095 33 21.155 50 4.373 67 4.515 84 4.598 101 4.649 
17 47.477 34 20.252 51 5.974 68 3.941 85 3.942 102 4.028 
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Figure 12. Stress ratios of the cooling tower 

 
Figure 13. Drift ratios of the cooling tower 

 
Figure 14. Convergence history of the CMA-ES for the cooling tower 



A. KAVEH, M. KALATEH-AHANI and M.S. MASOUDI 

 

252 

5. DISCUSSION 
 

The CMA-ES is a suitable alternative for continuous optimization, if classical search methods 
fail due to a non-convex or rugged search landscape. It overcomes typical problems that are 
often associated with evolutionary algorithms including 
1. Poor performance on highly non-separable objective functions. A function f is called 

separable if the variables of f are independent in that the global optimum can be obtained 
by n one dimensional optimization procedures along the coordinate axes. Difficult real 
variable optimization problems exhibit essential dependencies between the variables. 
Learning these dependencies has been successfully addressed by the CMA, which learns 
all pair-wise dependencies by updating a covariance matrix for the sample distribution. 

2. The inherent need to use large population sizes. A typical reason for the failure of population 
based search algorithms is the degeneration of the population into a subspace. This is usually 
prevented by a large population size (considerably larger than the problem dimension). In the 
CMA-ES, the population size can be freely chosen, because the learning rates c1 and cµ prevent the degeneration even for small population sizes. Small population sizes generally lead 
to faster convergence, large population sizes help to avoid local optima. 

3. Premature convergence of the population. Step-size control in the CMA-ES prevents the 
population to converge prematurely.  

Invariance properties of a search algorithm denote identical behavior on a set, or a class of 
objective functions. The CMA-ES has several invariance properties. Two main of them are (1) 
invariance to order preserving transformations of the objective function value, since the 
algorithm only depends on the ranking of function values, And (2) invariance to angle 
preserving transformations of the search space (rotation, reflection and translation), if the 
initial search point is transformed accordingly. 

 

 
Figure 15. Adaptation history of the step-size for the cooling tower 

 
The CMA-ES does not require a tedious parameter tuning for its application. In fact, the 

choice of strategy internal parameters is not left to the user. Finding good strategy parameters 
is considered as a part of the algorithm design, and not part of its application. For the 
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application of the CMA-ES, just an initial solution, an initial standard deviation (step-size) 
and, possibly, the termination criteria need to be set by the user.  

Self-adaptation is an important feature of the CMA-ES. Self-adaptation in its purest meaning is 
a method to adjust setting of the strategy parameters. It is called self-adaptive because the algorithm 
controls the setting itself. Self-Adaptation aims at biasing the distribution towards promising 
regions of the search space while maintaining sufficient diversity of the search. Adaptation history 
of the step-size for the fourth design example is shown in Figure 15. When the step-size 
approaches zero, the population converge to an optimum solution. 

 
 

6. CONCLUSIONS 
 

In this paper, the CMA-ES, which rates among the most successful evolutionary algorithms 
for real variable optimization, is implemented to solve size optimization problems of truss 
structures. Various test problems are performed to evaluate the performance of the algorithm. 
The numerical results confirm that in comparison to state-of-the-art heuristic algorithms, the 
CMA-ES is a highly reliable and competitive optimization method, particularly for the large-
scale problems.  
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Table 8. Default strategy parameters 
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Figure 16. Template of the CMA-ES 

 


